

Multichannel charge amplifier

Type 5159A...

For the injection molding machine

The multichannel charge amplifier Type 5159A... converts the charge signal from one or four piezoelectric cavity pressure sensors or two piezoelectric cavity pressure sensors and the signal from two thermocouples into a proportional voltage signal or a digital signal according to EUROMAP 75 with Varan- or EtherCAT real-time protocol. This amplifier has been developed for the industrial application with injection molding machines

- · Charge and thermocouple amplifier
- Interface option:
 Analog output 0 ... 10 V or digital signal according to
 EUROMAP 75 with Varan- or EtherCAT real-time protocol
- Digital versions are cascadable
- Optional self-optimizing switch-over output (SLP-Option)
- Industrial case with IP54 protection

Description

The multichannel charge amplifier Type 5159A... is provided with one or four charge signals from piezoelectric cavity pressure sensors. Amplifiers equipped with two temperature inputs are provided with two charge signals from piezoelectric cavity pressure sensors. In addition to the conventional single-channel connecter type BNC, the 4 channel charge amplifiers also feature the advanced multi-channel cable technology for connecting up to all 4 cavity pressure sensors with only one cable. An analogue variant with a voltage signal of 0 ... 10 V and two digital variants according to EUROMAP 75 specifications are available as the interface to the injection molding machine. For the EUROMAP specification the two real-time ethernet protocols Varan and EtherCAT are available. The Varan and Ether CAT-version have bus connectors which allow cascading to achieve a higher number of channels on the injection molding machine.

The option SLP (Switch Level Processing – self-optimizing switch-over point output) automatically detects the volumetric filling of the mold, and in each cycle sends a control signal to the injection molding machine. The mold must be equipped with a measuring cavity pressure sensor near the gate.

Photo of version: Digital charge amplifier according to EUROMAP 75 2-channel charge amplifier (BNC) + 2-channel thermocouple amplifier

Application

The multichannel charge amplifier Type 5159A... is intended for use with all types of cavity pressure piezoelectric sensors and Typee K/J/L/N thermocouples. The output signals can be used to monitor, control and optimize the injection molding process.

The charge amplifier has been optimized for installation in injection molding machines and developed for OEM equipment. The injection molding machine must have the appropriate hardware connections for the analog and digital variants and the controller must be prepared accordingly. Retrofitting is carried out exclusively by the machine manufacturer.

The SLP function for self-optimizing switch-over point detection can be easily integrated into machine controls. This option considerably reduces the set-up effort of the processes, as the switch-over point is automatically set by the charge amplifier without manual optimization. During production, the option automatically controls this variable and thus leads to more consistent part quality in the event of process variations.

Technical specifications

er

Charge amplifier		
Number of channels		1, 2, 4
Measuring range		
Type 5159A1(Analog)		
Measuring range II (FSO)	pC max.	±5,000
Measuring range I (FSO)	pC max.	±20,000
Measuring range		
Type 5159A2 (Varan) and		
Type 5159A3 (EtherCAT)		
Measuring range I (FSO)	pC max.	±2,000
Measuring range II (FSO)	pC max.	±5,000
Measuring range II (FSO)	pC max.	±10,000
Measuring range IV (FSO)	pC max.	±20,000
Measuring cut-off at FSO	% FSO	<±0,5
Drift		
25°C, max. relative Humidity RH of	pC/s	<±0,05
60 %, non-condensing type		
25°C, max. relative Humidity FH of	pC/s	<±0,05
70 %, non-condensing type		
50°C, max. relative Humidity RH of	pC/s	<±0,3
50 %, non-condensing type		
Reset-Operate transient	рC	<±2
Noise suppression between	dB	>50
sensor-GND and Analog		
output-GND		
(0 0,3 kHz)		
Input signal without damage:		
Voltage (long term)	V	±10
Frequency range (-3 dB, Cable kap. <1nF)	kHz	≈0 >1
		·

Thermo couple amplifier

Number of channels		2
Туре		K/J/N/L
Measuring range	°C	0 300
Input resistance	ΜΩ	>1
Measuring (digital linearized	°C	<±1
Without cold junction error)		
Cold junction error	°C	<±1
Frequency range (–3dB)	kHz	0 >0,5
Highest input signal without		
damage – Voltage	V	<±10
·		

Data acquisition		
Resolution (DeltaSigma)	bit	16
Sample rate	ksps	46,875
Group delay ADC (38/fData)	ms	0,811
Data processing, refresh rate	μs	250
Second order low pass filter	Hz	Off/10/100/
(cut-off frequency)		500/800

Group delay	TP = Off	ms	<1,6
(overall system)	TP = 800 Hz	ms	<1,7
(to analog signal)	TP = 500 Hz	ms	<1,8
	TP = 100 Hz	ms	<3,4
	TP = 10 Hz	ms	<23,4

Analog output

Number	max.	4
Output voltage	V	0 ±10
Output voltage at "Overload"	V	±10,3
Output voltage at "Error status"	V	±10,5
Output current	mA	0 ±5
Error	%	<±0,1
Resolution (DAC)	Bit	14
Refresh rate	μs	400
Output resistance	Ω	10
Capacitive load (without oscillation)	μF	<1
Output noise signal (0,1 Hz 1 MHz)	mVpp	<10
Frequency range (–3dB)	kHz	0 >1

Digital inputs

Number		9
Input voltage range	VDC	0 30
(optocoupler activation at 24 V)	mA	>2)
Max. logic level Low	VDC	<5
Min. logic level High	VDC	>10
Input resistance	kΩ	>10
Delay period (for signal detection in SW)	ms	<1,6
Actuation bipolar and galvanically		
isolated with optocouplers		
Galvanic isolation (not safety relevant)	VDC	<50
type		
Voltage between input and ground	Vrms	<30

Digital outputs

	4
V	Supply voltage
	- 1
VDC	18 30
High-Side	Load to GND
mA	<50
mA	<500
ms	<1,6
VDC	<50
	VDC High-Side mA mA

Seite 2/9

measure. analyze. innovate.

Current supply

Supply voltage	VDC	18 30
Current consumption for 24 V	mA	<130
Over voltage resistance (40 ms/max)	V	55
Galvanic isolation against measuring	VDC	<50
circuit and digital inputs type.		
(not safety relevant)		

Fieldbus

Hardware	Standard Ethernet IEEE 802.3 100 Base-Tx
Transformer coupled	

VARAN

Client according standards		VNO
Support of the alternating buffer		
Protocol		Euromap 75
Refreshing rate minimal	kHz	2,5

EtherCAT

Slave according standard		ETG
Protocol		Euromap 75
Refreshing rate minimal	kHz	2,5

Functionality of digital inputs

The digital input can be connected either with the potential 18 ... 30 VDC or with GND. Therefore Test, Operate, Range II und Sensitivity will be controlled with opposite potential or, customer specific, with any potential.

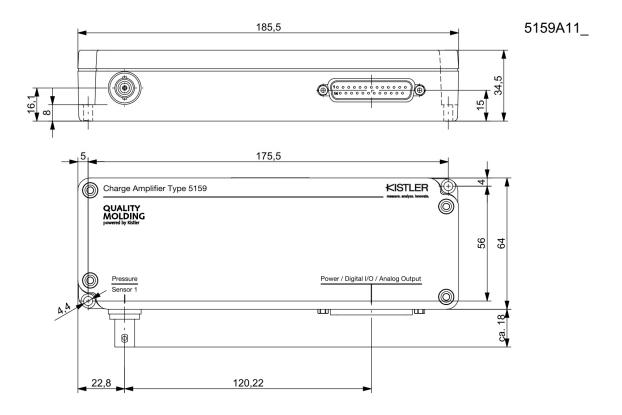
Control level:

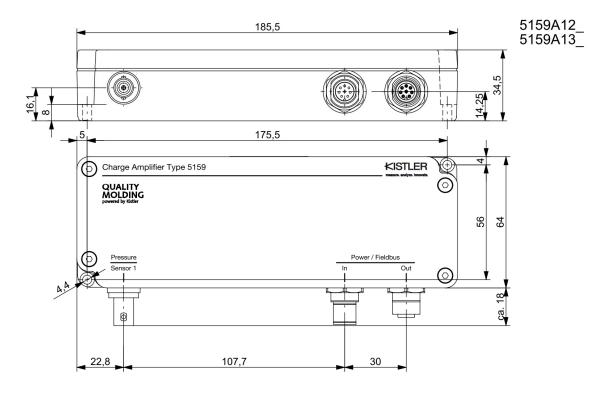
Operate	logic	High
Reset	logic	Low
Range II (5,000 pC)	logic	High
Range I (20,000 pC)	logic	Low

		TeSel2	TeSel1_
	Bit	2	1 .
Thermocouple K		Low	Low
Thermocouple J		Low	High
Thermocouple N		High	Low
Thermocouple L		High	High

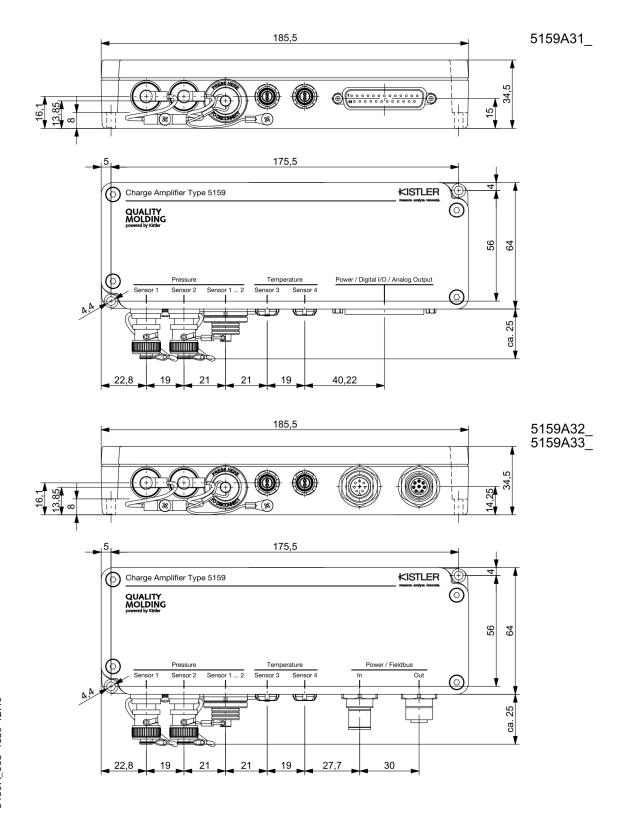
Test signal (8 V)	On	logic	High	
Test signal	Off	logic	Low	

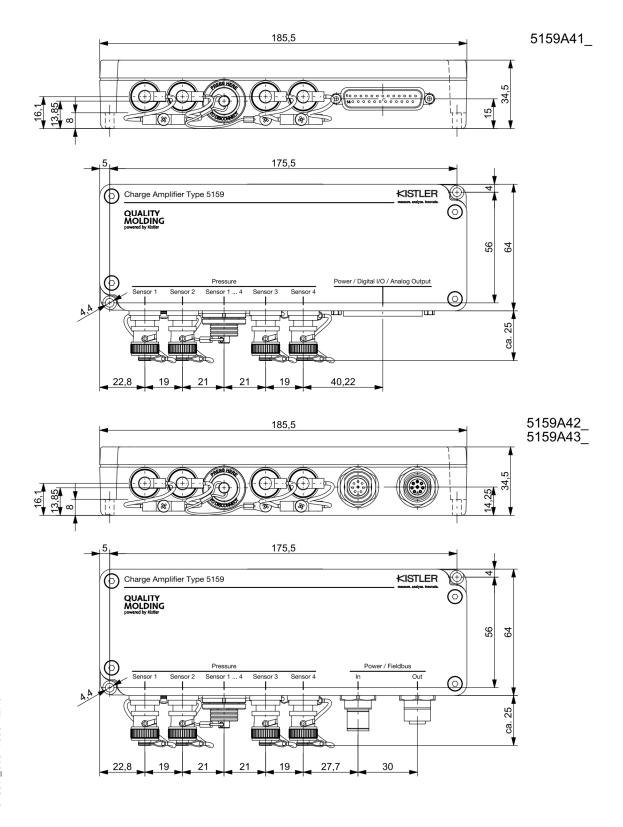
(Test signal of 8 V on all available output channels, when Range II is active)


General data


Operating temperatures	°C	0 70	
Storage temperature	°C	-20/80	
Vibration resistance IEC60068 part 2-6	gp	1	
(58150 Hz constant)			
Impact resistance IEC60068 part 2-27 (11ms)	g	11	
Degree of protection (with mounted and/or	IP	54	
cover connectors) EN60529			
Housing material		Alloy-Die casting	
Weight	g	460	
Recommended mounting position: vertical surface, connectors down			
side.			

Installation


The device is installed with two M4 hexagon socket head cap screws.



measure. analyze. innovate.

measure. analyze. innovate.

Connections

Sensor charge inputs

Channel 1

Channel 2

Channel 3

Channel 4 4 5 Sensor GND

6 NC

Sensor thermocouple input -red point

VIN+ VIN-

Type

Type

Fischer

DBPU 102 A051

18 Common Control

19 Operate

21 Test

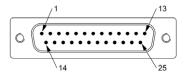
20 Sensitivity

22 Range II Ch1

23 Range II Ch2

24 Range II Ch3

25 Range II Ch4


BNC neg. / TNC neg.

(Parallel connected)

Channel no. >1 Fischer A103A056 male

female

Supply, signal outputs, control inputs Type 5159A...1... (Analog) DSub 25 pol male Type

1 Signal Out Ch1 10 SF2

2 Signal Out Ch2 a) 11 NC 3 Signal Out Ch3 b) 12 FIX / SF3* 13 SL / SF4*

17 NC


4 Signal Out Ch4 b) 14 Signal GND 5 NC Exct 18 ... 30 VDC 15 T.Element Sel1 Exct 18 ... 30 VDC 7 16 T.Element Sel2

8 Exct GND 9 SF1*

a) 1 channel version: NC b) 1 and 2 channel version: NC

*SF1 ... 4 = melt front 1 ... 4

Varan fieldbus input, Type 5159A...2... (Varan) and Type 5159A...3... (EtherCAT)

1 NC 2 TX+

3 TX-4 NC

5 RX+ 6 GND

(Exct GND) 7 +24VDC (Exct)

8 RX-

Туре

M12-connector 8-polig male, Binder Connector 09-3481-116-08

Varan fieldbus output (Slave), Type 5159A...2... (Varan) and Type 5159A...3... (EtherCAT)

1 NC

2 TX+

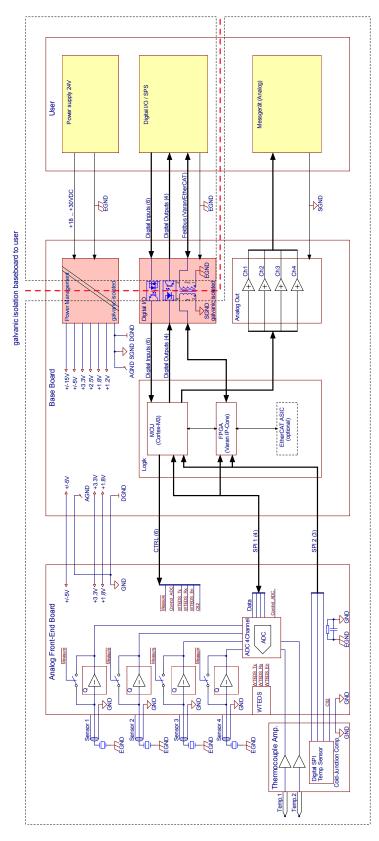
3 TX-

4 NC

5 RX+

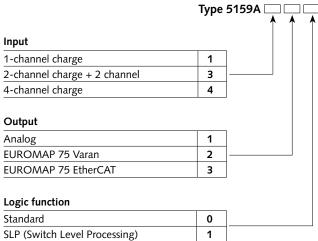
6 GND (Exct GND)

+24VDC (Exct)


8 RX-

Type

M12-connector 8-polig female, Binder Connector 09-3482-116-08


Block diagram Type 5159A...

Optional accessories • BNC-TNC adapter	Type/Mat. Nr.
D-Sub connector, 25 pol female	65009205
 D-Sub plastic cover, water proof, 	03009203
shielded, for 25 pol D-Sub	65008375
(Conec Art.No.: 165 X 15039 X)	
• D-Sub-connector 25 pol female IP67	
with screw fixation	
M20x1,5 for cable diameter 6 12 mm	1557A10
Compensation lead Type K	
(Fischer connector to Fischer connector)	2295A
Compensation lead Type K	
(Fischer connector to Fischer open end)	2290AQ01sp

Ordering key

